

2005

YEAR 12

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Working time 2 Hours.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4), Section C (Questions 5 and 6) and Section D (Question 7)

Total Marks - 84

- Attempt questions 1-7
- All QUESTIONS are of equal value.

Examiner: A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Total marks - 84 Attempt Questions 1 - 7 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

	Section A		
		į	Marks
Question 1 (12 m	arks)		
(a)	Simplify $\frac{3^n}{3^{n+1}-3^n}$		1
(b)	Evaluate $\lim_{x\to 0} \frac{\sin 5x}{4x}$		1
•			
(c)	The remainder when $x^3 - 3x^2 + px - 14$ is divided by $x - 3$		2
	is 1. Find the value of p .		
(d)	Given that $\log_a 2 = x$, find $\log_a (2a)$ in terms of x.		2
			o as v-1.
(e)	Find the coordinates of the point P that divides the		2
	interval from A (-1,5) to B (6,-4) externally in the		
	ratio 3:2.		
· ·			
(f)	Find, to the nearest minute, the acute angle between		. 2
	The lines $3x + 2y - 5 = 0$ and $x - 5y + 7 = 0$.		٠.
	3		
(g)	Solve the inequality $\frac{2}{r} \le 1$	•	. 2

Question 2 (12 marks)

(a) Differentiate with respect to x

(i)
$$y = \tan^3(5x+4)$$

(ii)
$$y = \ln\left(\frac{2x+3}{3x+4}\right)$$

(iii)
$$y = \cos(e^{1-5x})$$

- (b) 30 girls, including Miss Australia, enter a Miss WorldCompetition. The first six places are announced.
 - (i) How many different announcements are possible?
 - (ii) How many different announcements are possible
 if Miss Australia is assured a place in the first six?
- (c) If $f(x) = \tan^{-1}(2x)$ evaluate:

(i)
$$f\left(\frac{1}{2}\right)$$
 1

(ii) $f'\left(\frac{1}{2}\right)$

End of Section

Section B (Use a SEPARATE writing booklet)

Marks

Question 3 (12 marks)

(a) (i) State the natural domain and the corresponding range of $y = 3\cos^{-1}(x-2)$

2

(ii) Hence, or otherwise sketch $y = 3\cos^{-1}(x-2)$

1

(b) Find $\int x\sqrt{16+x^2}dx$ using the substitution $u=16+x^2$

2

(c) Find the general solution of $\sin 2\theta = \sqrt{3}\cos 2\theta$

2

(d) The roots of the equation $4x^3+6x^2+c=0$, where c is a non-zero constant, are α , β , and $\alpha\beta$.

5

(i) Show that $\alpha\beta \neq 0$.

(ii) Show that $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$ and deduce the value of $\alpha + \beta$.

(iii) Show that $\alpha\beta = -\frac{1}{2}$.

Question 4 (12 marks)

(a) If
$$\tan \theta = 2$$
 and $0 < \tilde{\theta} < \frac{\pi}{2}$ evaluate $\sin \left(\theta + \frac{\pi}{4} \right)$.

(b) In the diagram ABCD is a cyclic quadrilateral. The bisector of ∠ABC cuts the circle at E, and meets AD produced at F.

- (i) Copy the diagram showing the above information
- (ii) Give a reason why $\angle CDE = \angle CBE$

1

(iii) Show that DE bisects ∠CDF

3

A square ABCD of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A (θ) decreases at a constant rate of $0\cdot 1$ radians per second.

- (i) At what rate is the area of the rhombus ABCD decreasing when $\theta = \frac{\pi}{6}$?
- 2
- (ii) At what rate is the shorter diagonal of the rhombus ABCD decreasing when $\theta = \frac{\pi}{3}$?
- 3

Section C (Use a SEPARATE writing booklet)

Question	n 5 (12). marks	s)	Marks
	a)		Two boys decide to settle an argument by taking turns to toss a die. The first person to throw a six wins.	
		(i)	What is the probability that the first person wins on his second throw?	1
		(ii)	What is the probability that the first person will win the argument?	2
(1	b)		$P(2at, at^2)$, $t > 0$ is a point on the parabola $x^2 = 4ay$.	
			The normal to the parabola at P cuts the x axis at X and the y axis at Y.	
		(i)	Show that the normal at P has equation $x + ty - 2at - at^3 = 0$	2
		(ii)	Find the co-ordinates of X and Y	1
		(iii)	Find the value of t such that P is the midpoint of XY	2

The point T lies on the circumference of a semicircle, radius r and diameter AB, as shown. The point P lies on AB produced and PT is the tangent at T.

The arc AT subtends an angle of θ at the centre, O, and the area of ΔOPT is equal to that of the sector AOT .

- (i) Show that $\theta + \tan \theta = 0$.
- (ii) Taking 2 as an approximation to θ , use Newton's method once to find a better approximation to two decimal places.

Question 6 (12 marks)

- (a) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation $\frac{d^2x}{dt^2} = -4x$ where t is the time in seconds
 - (i) Show that $x = \alpha \cos(2t + \beta)$ is a possible equation of motion for this particle, where α and β are constants
 - (ii) The particle is observed initially to have a velocity of 2 metres

 per second and a displacement from the origin of 4 metres.

 Find the amplitude of the oscillation.
 - (iii) Determine the maximum velocity of the particle 2
- (b) Prove by Mathematical Induction that $\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4} n^2 (n+1)^2$
- (c) Consider the function $f(x) = \frac{x}{\sqrt{1-x^2}}$
 - (i) Find the domain of f(x)
 - (ii) Find $f^{-1}(x)$, the inverse function of f(x)

End of Section

Section D (Use a SEPARATE writing booklet)

Marks

Question 7 (12 marks)

- (a) A projectile fired with velocity V and at an angle of 45° to the horizontal, just clears the tops of two vertical posts of height $8a^2$, and the posts are $12a^2$ apart. There is no air resistance, and the acceleration due to gravity is g.
 - (i) If the projectile is at a point P (x, y) at time t,
 Derive expressions for x and y in terms of t.
 - (ii) Hence, show that the equation of the path of the projectile is $y = x \frac{gx^2}{V^2}$
 - (iii) Using the information in (ii) show that the range of the projectile is $\frac{V^2}{g}$
 - (iv) If the first post is b units from the origin, show that 2

$$(\alpha) \qquad \frac{V^2}{g} = 2b + 12a^2$$

$$(\beta) \qquad 8a^2 = b - \frac{gb^2}{V^2}$$

(v) Hence or otherwise prove that $V = 6a\sqrt{g}$

End of paper

AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12

Mathematics Extension 1 Sample Solutions

Section	Marker
A	RD
В	RB
С	FN
D	AMG

$$Q[a] \frac{3^{n}}{3^{n+1}-3^{n}} = \frac{3^{n}}{3^{n}(3-1)} = \frac{1}{1-\frac{3}{10}} = \frac{1}{1-\frac{3}{10}}$$

(b)
$$\lim_{x\to 0} \frac{\sin 5x}{4x} = \lim_{x\to 0} \frac{\sin 5x}{5x} = \frac{5}{4}$$

(4)
$$P(3) = 27 - 27 + 3p - 14 = 1$$

$$3p = 15$$

$$P = 5$$

(d)
$$\log_a 2a = \log_a 2 + \log_a a$$

$$= x + 1 \quad (2)$$

(e)
$$P = \left(\frac{-3 \times 6 + 2 \times -1}{-3 + 2}, \frac{-3 \times -4 + 2 \times 8}{-3 + 2}\right)$$

$$= \left(\frac{-20}{-1}, \frac{22}{-1}\right)$$

$$= \left(20, -22\right)$$
(2)

(f)
$$fen \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

= $\left| \frac{-\frac{3}{2} - \frac{1}{5}}{1 + -\frac{3}{2} \times \frac{1}{5}} \right|$

$$= \begin{vmatrix} -\frac{15}{10} & \frac{2}{10} \\ \hline 1 & -\frac{3}{10} \end{vmatrix}$$

$$= \begin{vmatrix} -\frac{11}{7} \\ \hline 7 \end{vmatrix}$$

$$= \frac{17}{7}$$

$$= 67^{\circ}37^{\circ}$$
(2)

$$\frac{2}{\chi} \leq 1$$

$$2\chi \leq \chi^{2}$$

$$0 \leq \chi^{2} - 2\chi$$

$$\chi(\chi - 2) \geq 0$$

$$\chi(\chi -$$

(a) (i)
$$y = \tan^3(5x+4)$$

 $y' = 3 \tan^2(5x+4)$, $\sec^2(5x+4)$

= 15 tan2 (57et4). sec2 (57et4)

(ii)
$$y = ln\left(\frac{2\pi t + 3}{3\pi t + 4}\right)$$

= ln (2re+3) - ln (3x+4)

$$y' = \frac{1}{2x+3} \times 2 - \frac{1}{3x+4} \times 3$$

 $= \frac{2}{2x+3} - \frac{3}{3x+4}$

(iii)
$$y = \cos(e^{1-5x})$$

 $y' = -\sin(e^{1-5x}) \cdot e^{1-5x}$
 $= 5\sin(e^{1-5x}) \cdot e^{1-5x}$

(ii) Choose the rix finalists and the consider where they may be placed:

'C, × 29 ×6!
= 118755 × 270

= 85 503 600

(c) (1)
$$f(\frac{1}{2}) = \tan^{-1} 1$$

= $\frac{\pi}{4}$

(ii)
$$f'(x) = \frac{1}{1+(2x)^2} \times 2$$

= $\frac{2}{1+4x^2}$

$$f'(\frac{1}{2}) = \frac{2}{1+4\times\frac{1}{4}}$$

3) (a) (b)
$$y = 3\cos^{2}(x-2)$$

Domain $-1 \le x-2 \le 1$
 $+2 + 2 + 2$
 $1 \le x \le 3$.

Range $0 \le \cos^{2}(x-2) \le \pi$
 $0 \le 3\cos^{2}(x-2) \le 3\pi$

(ii) $y = 3\cos^{2}(x-2)$
 2π
 π

(b) $\int x. \sqrt{b+\pi^{2}} dx$. using $u = b+x^{2}$
 $u = b+x^{2}$ become $\int du$. $u^{\frac{1}{2}}$
 $du = 2x$.

 $du = 2x$.

 $du = 2x$.

 $du = x dx$.

(c) general solve to $\sin 2\theta = \sqrt{3}\cos 2\theta$ $\frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta = \frac{\sqrt{3}}{3}$ So $2\theta = \frac{\pi}{3} + k\pi$ $\theta = \frac{\pi}{4} + \frac{k}{2}\pi$ where $k = 0, 1, 2, 3, \dots$ (d) $4x^3 + 6x^2 + C = 0$ $c \neq 0$, roots are α , β , $\alpha\beta$. (i) sum of roots $\alpha + \beta + \alpha \beta = -\frac{6}{a} = -\frac{6}{4}$ product $d\beta d\beta = (\alpha \beta) = -\frac{d}{a} = -\frac{c}{a}$ product in twos $\alpha \beta + \alpha \beta + \alpha \beta^2 = \frac{C}{\alpha} = \frac{Q}{4} = 0$ now since $(\alpha\beta)^2 = -\frac{c}{4}$ and $c \neq 0$ then db +0 (ii) from above, since d\beta + d\beta + d\beta = 0 then $d\beta(1+d+\beta)=0$ So $d\beta=0$, but it cannot from (i) So $1+d+\beta=0$ d+B=-1/ $\frac{1}{1-1+\alpha\beta} = -1\frac{1}{2}$ $\frac{1}{1-1}$ $\frac{1}{1-1}$ $\frac{1}{1-1}$

$$\frac{dED}{dt} = \frac{12 \times 13 \times -0.1}{2}$$

$$\frac{dED}{dt} = \frac{12 \times 5 \times -0.1}{2}$$

$$\frac{2 \times 10}{2}$$

$$\frac{2 \times \sqrt{1}}{2}$$

$$= \frac{\sqrt{6} \times -1}{2} \times \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} \times -1}{2} \times \frac{\sqrt{2}}{2}$$

$$= -\frac{\sqrt{3}}{40} = -\frac{\sqrt{3}}{40} = \frac{\sqrt{3}}{20} \times \frac{\sqrt{3}}{20}$$

shortes diagonal decreasing at \frac{53}{20} u/s

Section C

QUESTION 5

(a)

(i)
$$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \frac{25}{216}$$

(ii)
$$\frac{1}{6} + \left(\frac{5}{6}\right)^2 \times \frac{1}{6} + \left(\frac{5}{6}\right)^4 \times \frac{1}{6}$$
..... geometric series $S_{\infty} = \frac{\frac{1}{6}}{1 - \left(\frac{5}{6}\right)^2} = \frac{6}{11}$

(b)(i)
$$y = \frac{x^2}{4a}$$
, $y^1 = \frac{x}{2a} = \frac{2at}{2a} = t$ = gradient of tangent gradient of normal $= -\frac{1}{t}$ eqn. of normal is $y - at^2 = -\frac{1}{t}(x - 2at)$ $yt - at^3 = -x + 2at$ $x + ty - 2at - at^3 = 0$ as required.

(ii) when
$$y = 0, x = 2at + at^3 \times (2at + at^3, 0)$$

when $x = 0, y = \frac{2at + at^3}{t} = 2a + at^2 \times (0, 2a + at^2)$

(iii) Midpoint, P is
$$\left(at + \frac{at^3}{2}, a + \frac{at^2}{2}\right)$$

 $2at = at + \frac{at^3}{2}$ $at^2 = a + \frac{at^2}{2}$
 $4at = 2at + at^3$ $2at^2 = 2a + at^2$
 $4 = 2 + t^2$ $2t^2 = 2 + t^2$
 $t = \pm \sqrt{2}$ $t = \sqrt{2}$, $t > 0$

(c)(i)
$$\angle TOP = \pi - \phi$$

 $\tan \angle TOP = \frac{PT}{r} = -\tan \phi$, $PT = -r\tan \phi$
area $\triangle TOP = \text{area sector TOA (given)}$
 $\frac{1}{2}r \times PT = \frac{1}{2}r^2\phi$
 $-r\tan \phi = r\phi$
 $-\tan \phi = \phi$
 $\phi + \tan \phi = 0$ as required.

(ii)
$$a_1 = a - \frac{f(a)}{f^1(a)} = a_1 = 2 - \frac{f(2)}{f^1(2)}$$

 $2 - \frac{2 + \tan 2}{1 + \sec^2 2} = 2 - \frac{-0 \cdot 185}{6 \cdot 774}$
 $2 \cdot 03 (2d.p.)$

QUESTION 6

(b)

(a)(i) if
$$x = \alpha \cos(2t + \beta)$$

$$\frac{dx}{dt} = -2\alpha \sin(2t + \beta)$$

$$\frac{d^2x}{dt^2} = -4\alpha \cos(2t + \beta) = -4x \text{ (a possible equation)}$$

(ii)
$$v^2 = n^2(\alpha^2 - x^2)$$
, $n = 2$ and $x = 4$ when $v = 2$
 $4 = 4(\alpha^2 - 16)$
 $\alpha = \sqrt{17} m$

(ii) Max velocity when displacement = 0

$$v^2 = 4(17 - 0)$$

 $v = 2\sqrt{17}m/s$

When
$$n = 1$$
, $1^3 = \frac{1}{4} \times 1^2 \times 2^2 - P(1)$ is true

Assume $P(k)$ is true $1^3 + 2^3 + k^3 = \frac{1}{4} k^2 (k+1)^2$

if $n = k+1$,

 $1^3 + 2^3 + k^3 + (k+1)^3 = \frac{1}{4} (k+1)^2 (k+2)^2$

LHS = $\frac{1}{4} k^2 (k+1)^2 + (k+1)^3$ (using assumption)

= $(k+1)^2 \left(\frac{1}{4} k^2 + k + 1\right)$

= $(k+1)^2 \frac{1}{4} (k^2 + 4k + 4)$

= $\frac{1}{4} (k+1)^2 (k+2)^2$

= RHS

P(k+1) is true if $P(k)$ is true. P(1) is true.

P(k+1) is true if P(k) is true. P(1) is true. \dots , by Mathematical Induction, P(n) is true for any integer $n \ge 1$

(c)(i)
$$1-x^2 > 0$$
 $-1 < x < 1$

(ii) If y = f(x), the inverse function is $x = \frac{y}{\sqrt{1 - y^2}}$ $x^2 = \frac{y^2}{1 - y^2}$ $x^2 - x^2y^2 = y^2$ $y^2(1 + x^2) = x^2$ $y^2 = \frac{x^2}{1 + x^2}$ $f^{-1}(x) = \frac{x}{\sqrt{1 + x^2}}$ (odd function)

Section D

(7)(a)

(i)
$$\ddot{x} = 0$$

Integrate w.r.t. t

$$\dot{x} = K$$

When
$$t = 0$$
, $\dot{x} = \frac{V}{\sqrt{2}}$

$$\therefore K = \frac{V}{\sqrt{2}}$$

$$\therefore \dot{x} = \frac{V}{\sqrt{2}}$$

Integrate w.r.t. t

$$x = \frac{Vt}{\sqrt{2}} + M$$

When t = 0, x = 0

$$\therefore M = 0$$

$$\therefore x = \frac{Vt}{\sqrt{2}}$$

$$\ddot{y} = -g$$

Integrate w.r.t. t

$$\dot{y} = -gt + L$$

When
$$t = 0$$
, $\dot{y} = \frac{V}{\sqrt{2}}$

$$\therefore L = \frac{V}{\sqrt{2}}$$

$$\therefore \dot{y} = \frac{V}{\sqrt{2}} - gt$$

Integrate w.r.t. t

$$y = \frac{Vt}{\sqrt{2}} - \frac{1}{2}gt^2 + N$$

When t = 0, y = 0

$$\therefore N = 0$$

$$\therefore y = \frac{Vt}{\sqrt{2}} - \frac{1}{2}gt^2$$

(ii) From the equation for x:

$$t = \frac{\sqrt{2}x}{V} \qquad \therefore y = \frac{V}{\sqrt{2}} \frac{\sqrt{2}x}{V} - \frac{1}{2} g \left(\frac{\sqrt{2}x}{V}\right)^2$$
$$y = x - \frac{gx^2}{V^2}$$

(iii) The range is achieved when y = 0

$$\therefore x - \frac{gx^2}{V^2} = 0$$

$$x\left(1 - \frac{gx}{V^2}\right) = 0$$

$$\therefore 1 - \frac{gx}{V^2} = 0$$

$$x = \frac{V^2}{g} \qquad \text{(Range)}$$

(iv) (α) By symmetry the second post is b units from point of impact

$$\therefore (x_R =) \frac{V^2}{g} = 2b + 12a^2$$

(β) When x = b, $y = 8a^2$, in the equation from (ii):

$$8a^2 = b - \frac{gb^2}{V^2}$$

(v) From (α) :

$$2b = \frac{V^2}{g} - 12a^2$$

$$\therefore b = \frac{V^2}{2g} - 6a^2$$

$$\therefore \frac{V^2}{2g} = b + 6a^2$$

$$\therefore V^2 = 2g(b + 6a^2)$$

$$= g(2b + 12a^2)$$

$$\therefore V = \sqrt{g}\sqrt{2b + 12a^2} \qquad (*)$$

Hence it remains to prove that $2b = 24a^2$.

Now
$$\frac{g}{V^2} = \frac{1}{2b + 12a^2}$$

So
$$8a^2 = b - \frac{gb^2}{V^2}$$

$$= b - \frac{b^2}{2b + 12a^2}$$

$$= \frac{2b^2 + 12a^2b - b^2}{2b + 12a^2}$$

$$\therefore 16a^2b + 96a^4 = 2b^2 + 12a^2b - b^2$$

$$= b^2 + 12a^2b$$

$$\therefore b^{2} - 4a^{2}b - 96a^{4} = 0$$

$$\therefore b = \frac{4a^{2} \pm \sqrt{16a^{4} + 4 \times 96a^{4}}}{2}$$

$$= \frac{4a^{2} \pm 4\sqrt{a^{4} + 24a^{4}}}{2}$$

$$= \frac{4a^{2} \pm 4 \times 5a^{2}}{2}$$

$$= 12a^{2} \text{ (Neg result extraneous)}$$

∴ In equation (*)

$$V = \sqrt{g}\sqrt{36a^2}$$

$$= 6a\sqrt{g}$$
 As required.